Telegram Group & Telegram Channel
Что делать, если в обучающем наборе для методов на основе соседей часть меток отсутствует или указана неполностью

Методы, основанные на ближайших соседях (например, k-NN), предполагают, что каждая обучающая точка имеет метку. Отсутствие меток усложняет обучение и прогнозирование, особенно если таких точек много.

📝 Варианты решений

1. Игнорировать объекты без меток
Можно обучаться только на размеченных примерах, но при этом теряется часть данных, что особенно критично при малом объёме обучающей выборки.

2. Использовать полубезнадзорные методы (semi-supervised)
Например, распространение меток (label propagation): метки итеративно «перетекают» от размеченных точек к близким неразмеченным, если они достаточно похожи.

3. Изучение структуры данных через неразмеченные точки
Даже если метки отсутствуют, сами объекты помогают определить геометрию признакового пространства и уточнить, кто кому «сосед».

📝 Подводные камни:

📝 Полубезнадзорные методы требуют решать, когда доверять сгенерированным меткам — легко получить ложные закономерности.
📝 Если метки отсутствуют не случайно (например, только у сложных или редких объектов), это может внести систематическую ошибку.
📝 Оценка качества модели затрудняется — стандартные метрики предполагают, что мы знаем истинные метки хотя бы на тесте.

📝 Вывод

Если часть меток отсутствует, не всегда стоит их игнорировать. Лучше использовать структуру данных через полубезнадзорные методы и явно учитывать, насколько случайна или предвзята сама пропуск меток.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/986
Create:
Last Update:

Что делать, если в обучающем наборе для методов на основе соседей часть меток отсутствует или указана неполностью

Методы, основанные на ближайших соседях (например, k-NN), предполагают, что каждая обучающая точка имеет метку. Отсутствие меток усложняет обучение и прогнозирование, особенно если таких точек много.

📝 Варианты решений

1. Игнорировать объекты без меток
Можно обучаться только на размеченных примерах, но при этом теряется часть данных, что особенно критично при малом объёме обучающей выборки.

2. Использовать полубезнадзорные методы (semi-supervised)
Например, распространение меток (label propagation): метки итеративно «перетекают» от размеченных точек к близким неразмеченным, если они достаточно похожи.

3. Изучение структуры данных через неразмеченные точки
Даже если метки отсутствуют, сами объекты помогают определить геометрию признакового пространства и уточнить, кто кому «сосед».

📝 Подводные камни:

📝 Полубезнадзорные методы требуют решать, когда доверять сгенерированным меткам — легко получить ложные закономерности.
📝 Если метки отсутствуют не случайно (например, только у сложных или редких объектов), это может внести систематическую ошибку.
📝 Оценка качества модели затрудняется — стандартные метрики предполагают, что мы знаем истинные метки хотя бы на тесте.

📝 Вывод

Если часть меток отсутствует, не всегда стоит их игнорировать. Лучше использовать структуру данных через полубезнадзорные методы и явно учитывать, насколько случайна или предвзята сама пропуск меток.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/986

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Among the actives, Ascendas REIT sank 0.64 percent, while CapitaLand Integrated Commercial Trust plummeted 1.42 percent, City Developments plunged 1.12 percent, Dairy Farm International tumbled 0.86 percent, DBS Group skidded 0.68 percent, Genting Singapore retreated 0.67 percent, Hongkong Land climbed 1.30 percent, Mapletree Commercial Trust lost 0.47 percent, Mapletree Logistics Trust tanked 0.95 percent, Oversea-Chinese Banking Corporation dropped 0.61 percent, SATS rose 0.24 percent, SembCorp Industries shed 0.54 percent, Singapore Airlines surrendered 0.79 percent, Singapore Exchange slid 0.30 percent, Singapore Press Holdings declined 1.03 percent, Singapore Technologies Engineering dipped 0.26 percent, SingTel advanced 0.81 percent, United Overseas Bank fell 0.39 percent, Wilmar International eased 0.24 percent, Yangzijiang Shipbuilding jumped 1.42 percent and Keppel Corp, Thai Beverage, CapitaLand and Comfort DelGro were unchanged.

Библиотека собеса по Data Science | вопросы с собеседований from no


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA